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Similarities Between Solid and Thin-Walled Composite Beams
by Analytic Approach

Omri Rand*
Technion— Israel Institute of Technology, Technion City, Haifa 32000, Israel

This paper presents a study of the similarities between solid and thin-walled composite beams. The
study is based on a set of closed-form solutions for simple solid and thin-walled composite-beam con� g-
urations. The prediction capability of these solutions is explored using available experimental data and
by means of correlation with theoretical results provided by numerical codes. The study includes the
basic lamination modes, covers all loading modes, and presents an important physical insight into the
structural behavior and the coupling mechanisms. The � ndings clearly indicate important similarities in
the structural behavior of solid and thin-walled beams. The results indicate that the proposed analytic
solutions represent correctly the beam-like behavior of composite beams regardless of their speci� c cross-
sectional geometry and lamination mode. In general, it is shown that by providing a clear insight and
correct structural characteristics, the analytic solutions being examined may be used as a preliminary
analysis tool for new designs.

Introduction

C OMPOSITE structures provide numerous advantages and
bene� ts over conventional aerospace materials. Among

these advantages it is important to note their high speci� c
strength, formability, and resistance to fatigue cracking and
corrosion. Subsequently, composite beams are used as the pri-
mary structural components in many applications. In most of
the cases, their high strength-to-weight ratio and improved fa-
tigue characteristics are the main reasons for their selection
during the design process.1 However, in many aerospace struc-
tures, the potential of exploiting the structural couplings seems
to be very attractive, and it is expected that these couplings
may be used for improving the structure performance in many
aspects beyond the static stiffness. Helicopter blades that are
traditionally treated as beams are a relevant example for such
use.2,3 In this case, one may exploit favorable structural cou-
plings to suppress vibration and augment stability margins.

Examination of the current structural models capable of
dealing with composite beams shows that compared with iso-
tropic beams, the analysis of composite beams is by far more
complicated, and includes many more unknowns and degrees
of freedom.

The present paper concentrates on the structural behavior of
composite beams, to which a considerable amount of research
work has been devoted during the last two decades. Therefore,
the following will be devoted to these aspects. However, it is
important to mention that the research of composite structures
and the study of the adequacy of composites to a wide range
of engineering applications has grown in many other directions
such as failure mechanisms, delamination phenomena, and en-
vironmental conditions.4–6

A relatively large portion of the models for composite-beam
analysis deals with thin laminated beams that may also be
viewed as slender plates (plate-beam models).7–11 These anal-
yses demonstrate the importance of modeling the shear defor-
mation (or the out-of-plane warping). This shear deformation
has a crucial in� uence on the structural behavior and the as-
sociated couplings, and its correct description usually requires
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the utilization of numerical schemes. Shear deformation is also
crucial for predicting stress singularities.12–14

The literature also contains detailed numerical analyses that
are capable of providing relatively accurate predictions of the
structural behavior of composite beams. Typically, such pre-
dictions must be based on a relatively large number of un-
knowns.15– 20 These types of modes are usually � nite-element-
based schemes and are capable of taking into account a
detailed deformation � eld including both the in-plane and the
out-of-plane warping effects and geometrical nonlinearities.
Finite-difference-based models are reported in Refs. 21 and 22
for linear and nonlinear analysis of both thin-walled and solid-
composite beams.

Very few experimental studies are reported in the literature.
References 23– 26 contain valuable experimental data that may
be directly used for validating general theoretical models of
composite beams. While Refs. 23 and 24 concentrate on the
nonlinear behavior of laminated (solid) composite beams
(plate-beam models), Ref. 25 deals with thin-walled box-
beams, and Ref. 26 concentrates on the structural behavior of
I-beams.

Unlike the well-known strength of materials solutions for iso-
tropic beams, there are only limited fundamental closed-form
exact analytic solutions for composite beams. Reference 27
presents an analytic approach for thin-walled beams that is
based on a variational and asymptotical theory. However, Refs.
22 and 28 present a set of closed-form solutions for solid and
thin-walled beams. Although these solutions are exact, they are
restricted to certain geometries and lamination modes. Their ad-
vantage emerges from their potential to provide insight and clear
identi� cation of the major parameters that control the compos-
ite-beam behavior and the resulting structural couplings.

The present paper reviews the previously mentioned closed-
form analytic solutions for solid and thin-walled composite
beams, and by being compared with available experimental
results and numerical models, this study enables the generali-
zation of results, and the identi� cation of similarities between
the beam-like behaviors of different solid and thin-walled con-
� gurations.

Analytic Models for Solid and Thin-Walled
Composite Beams

Deformation
Figure 1a presents a slender, straight, and untwisted com-

posite beam of solid cross section, whereas Fig. 1b presents
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Fig. 1 a) Scheme of a straight, uniform, and untwisted composite
beam of solid cross section and b) a thin-walled cross section.

the notation for a thin-walled cross section. The beam length
l is stretched along the x axis, whereas the coordinates y and
z de� ne the cross-sectional planes. For a thin-walled cross sec-
tion, it is convenient to de� ne a local system of coordinates
that is attached to the contour so that j is parallel to the x
direction and h is tangent to the local contour (Fig. 1b). The
angle a is measured between the y and h directions, and r is
the normal distance to the tangent to the contour at the point
under discussion. The beam is assumed to consist of ortho-
tropic laminae that are parallel to the x – y plane in the case of
a solid cross section, or parallel to the local j – h plane, i.e.,
parallel to the local wall direction, in the case of a thin-walled
cross section.

Deformation is based on four cross-sectional displacements
that are functions of x only, and one three-dimensional out-of-
plane warping function. The cross-sectional displacements are
the displacements u(x), v (x), and w(x) in the x, y, and z direc-
tions, respectively, and the twist angle, f(x), about the x di-
rection. The three-dimensional warping function is denoted C.
For solid cross sections, C is a function of x, y, and z. For
thin-walled cross sections, the variation of C through the wall
thickness is neglected and, therefore, C is a function of j (or
x) and s, where s is a circumferential coordinate along the wall
(Fig. 1b). In both cases C should be a single-value continuous
function that has a zero-average value over the cross-sectional
area.

Strain Components

The following formulation is con� ned to the linear case
in which no distinction between the deformed and the unde-
formed directions in required, and the preceding assumed de-
formation components may be directly used to construct the
strain expressions. For this linear case, the nonvanishing strain
components for a solid cross section are given by

« = u 2 yv 2 zw 1 C (1a)xx ,x ,xx ,xx ,x

g = yf 1 C (1b)xz ,x ,z

g = 2zf 1 C (1c)xy ,x ,y

where «xx is the normal strain, and gxz and gxy are the shear
strains. ( ),x denotes differentiation with respect to x (or j ). For

a thin-walled cross section, the only nonzero linear strain com-
ponents are the normal strain «jj and the shear strain along the
wall gjh, which are given by

« = u 2 yv 2 zw 1 C (2a)jj ,x ,xx ,xx ,x

g = 2rf 2 C (2b)jh ,x ,s

Constitutive Relations

For a solid cross section, the constitutive relations are ob-
tained by exploiting the beam slenderness and assuming syy =
szz = tyz = 0. This assumption has proven to be exact in the
isotropic case, e.g., Ref. 29, and it may be shown analytically
to be true in the case of homogeneous composite beam of solid
cross section under pure bending moment as well. Conse-
quently, a shown in the Appendix, it is possible to express the
relations between stress components that act over the solid
cross-sectional area and the preceding strain components by

s C 0 C «xx 11 16 xx

t = 0 C 0 g (3)xz 55 xzS D F G S D
t C 0 C gxy 16 66 xy

The elastic moduli Cij are functions of the material properties
and the local ply angle relative to the x axis, e.g., Ref. 30.
Note that the strains «yy and «zz are not zero [these strains may
be determined based on the values of the strain components
«xx and gxy as shown in Eq. (A5)] and, thus, Poisson’s ratio
effects are included in the previously presented formulation.

For a thin-walled cross section, the preceding material con-
stitutive relations are applicable in the local j, h, and z system
directions. By assuming shh = szz = tjz = thz = 0, these rela-
tions may be reduced to

s C C «jj 11 16 jj= (4)S D F G S Dt C C gjh 16 66 jh

For cases of nonuniform ply properties, a methodology for
creating three-dimensional effective elastic constants might be
helpful. Such ef� cient methodology is described in Ref. 31.

Equations of Equilibrium

Four integral equilibrium equations are derived for the four
cross-sectional displacement components, and one differential
(local) equation is derived for the warping function. The in-
tegral equations equate the cross-sectional resultants P (in the
x direction), Fy (in the y direction), Fz (in the z direction), and
the moment resultant Mx (in the x direction) that are obtained
by the external loads to those obtained by stress integrations.
For solid cross sections these equations become

(P, F , F , F , M ) = (s , t , t , t y 2 t z) dA (5)y y z x xx xy xz xz xyE E
A

The differential equation of equilibrium for solid cross sections
is the associated differential equilibrium equation in the x di-
rection that is given by

s 1 t 1 t 1 B = 0 (6)xx,x xy,y xz,z x

where Bx is the body force in the x direction. Similarly, the
corresponding integral equilibrium equations may be written
for a thin-walled cross section as

(P, F , F , M ) = (s , t cos a, t sin a, 2rt ) dz dsy z x jj jh jh jhE E
s t

(7)
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Fig. 2 Illustrative thin-walled and solid cross sections: a) elastic
moduli distribution in an example symmetric lamination mode
where C16 > 0 for 0 # s # p/2 and C16 < 0 for p/2 # s # p, b)
dimensions of a thin-walled box-beam, c) lamination angle distri-
bution in an example symmetric lamination mode, d) distribution
of C16 for the cross section presented in c), and e) an antisym-
metric solid beam made of two laminae of opposite layup angles.

where, as shown, the integration is taken over the thickness
and along the cross-sectional circumference to account for alll
stresses over the cross-sectional area. The differential equilib-
rium equation takes the form

s 1 t 1 B = 0 (8)jj ,j jh,h j

Note that the preceding formulation consistently includes body
forces in the x direction (Bx or Bj ) and, therefore, may ade-
quately be used to predict the effect of axial (centrifugal) loads
on the behavior of composite rotating blades.

Boundary Conditions

There are eight boundary conditions at the beam root and
tip. For a clamped beam, the geometrical boundary conditions
at the beam root are

u = v = v = w = w = f = 0 (9),x ,x

The natural boundary conditions at the beam tip are based on
equating the external transverse tip moments, and , tot tM My z

those obtained by stress integrations over the tip cross-sec-
tional area A t. These conditions may be written as

t t t(M , M ) = (s z, 2s y) dA (10)y z xx xxE E
tA

where in the case of a thin-walled cross-section, sxx should be
replaced with sjj. For a solid cross section there is additional
essential contour boundary condition that ensures no shear-
stress � ow through the contour, namely,

t = 0 on C (11)N

where tN is the shear stress normal to the contour C (Fig. 1a).

Analytic Solutions, Correlation, and Discussion
The analytic solutions presented in this paper were derived

for simpli� ed con� gurations that enable closed-form solutions
and capture the main structural mechanisms (part of these so-
lutions appear with more details in Ref. 22). For example, solid
symmetric beams are represented by homogeneous cross sec-
tions where all laminae are identical and oriented at the same
angle with respect to the x axis (which may be also viewed as
single lamina cross sections). Because the elastic moduli are
all constants in such cases, it is convenient to apply analytic
techniques for their analysis. The geometry and the lamination
modes for the thin-walled cross sections are described later.

The following discussion is � rst concentrated in symmetric
beams and includes the in� uence of tensile forces P, torsional
moments Mx, beamwise moments My, edgewise moments Mz,
beamwise forces Fz, and edgewise forces Fy. Then, antisym-
metric beams are discussed through the in� uence of P and Mx.
Where available, the applicability of the proposed generalized
solutions is demonstrated by correlation with experimental and
numerical results.

Symmetric Beams

Tip Tensile Force

Solid cross section: When a homogeneous solid symmetric
beam of arbitrary geometry is subjected to a tip tensile force,
P t, the preceding equilibrium equations [Eqs. (5)] and bound-
ary conditions [Eqs. (9) and (11)] are ful� lled by setting v,xx,
w ,xx, and f,x to zero and

tP C66
u = (12a),x 2A C C 2 C11 66 16

tP C16
C = 2 y (12b)2A C C 2 C11 66 16

tP C16
g = 2 (12c)xy 2A C C 2 C11 66 16

As indicated by Eq. (12a), the longitudinal strain variation is
determined by the three elastic moduli C11, C66, and C16 (C55

does not participate). Thus, the approximation u,x = P t/AC11

may induce signi� cant discrepancies. For typical graphite/ep-
oxy properties (E11 = 130 3 109 N/m2, E22 = E33 = 12 3 109

N/m2, G12 = G13 = 6 3 109 N/m2, G23 = 4 3 109 N/m2, n12 =
n13 = 0.3, n23 = 0.5), an error of about 50% is obtained for a
ply angle of 30 deg. Equation (12b) shows that in this case
the warping is a linear function of y, and Eq. (12c) shows that
the shear strain in the y direction is a negative constant.

A thin-walled cross section: To facilitate the discussion of a
thin-walled symmetric beam, the cross section of arbitrary ge-
ometry shown in Fig. 2a will be studied. In this cross section,
the part for which 0 # s # p/2 (where p is the cross-sectional
circumference) is assumed to be characterized by the elastic
moduli C11, C66, and C16, whereas the part for which p/2 # s
# p is characterized by C11, C66, and 2C16. A speci� c example
for this case is the rectangular (box-beam) cross section shown
in Fig. 2a, where the upper part of this cross section, i.e., for
z > 0 or 0 # s # (a 1 b), is assumed to be characterized by
the elastic moduli C11, C66, and C16, whereas the lower part,
i.e., for z < 0 or (a 1 b) # s # 2(a 1 b), is characterized by
C11, C66, and 2C16. Such a cross section may be obtained by
lamination angles of opposite signs for the upper and lower
parts (note that the lamination angles are relative to the local
system of coordinates j, h, and z shown in Fig. 1b).
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To derive an analytic solution for this case, it is convenient
to start with the uncoupled case where C16 = 0 (while C11 and
C66 are kept unchanged). In this case, it is clear that v = w =
f = C = 0 and u,x = P t/C11pt. When a nonzero value of C16

is considered, additional strains D«jj = Du,x and Dgjh = 2C ,s

should appear to provide the same stress distribution (and,
therefore, both equilibrium equations and boundary conditions
will remain satis� ed). To generate an exact closed-form ana-
lytic solution for this case, C is assumed to be a linear function
of the circumferential coordinate s (see Fig. 2a) given by

C(s) = a[s 2 (p/4)] for 0 # s # (p/2)
3–= a( p 2 s) for (p/2) # s # p (13)4

where a is a constant to be determined. Note that this distri-
bution satis� es the requirements r C ,s ds = 0 and r C ds = 0.
The requirement for zero additional stresses yields [see Eq.
(4)]

Ds = C Du 2 C a = 0 (14a)jj 11 ,x 16

Dt = C (u 1 Du ) 2 C a = 0 (14b)jh 16 ,x ,x 66

It should be emphasized that because both the elastic modulus
C16 and C,s have opposite signs in the upper and lower parts
of the cross section, Eqs. (14a) and (14b) hold for the entire
beam. The solution of these equations yields the values of Du,x

and a in terms of the uncoupled axial strain u,x. Using these
values, the axial extension, the warping, and the shear strain
may be written as

tP C66
u 1 Du = (15a),x ,x 2pt C C 2 C11 66 16

tP C16
C = 2Dg (15b),s jh = 2pt C C 2 C11 66 16

The preceding closed-form solutions for symmetric solid and
thin-walled composite beams reveal some interesting similar-
ities. First, it should be noted that Eq. (12a) (that has been
developed for a solid cross section of arbitrary geometry) holds
for the thin-walled case as well (by replacing A with pt) and,
therefore, the change in the axial stiffness shown by Eq. (12a)
applies to both solid and thin-walled cross sections. Also, sim-
ilar to the case of a solid cross section, the warping distribution
over the upper and lower parts of the cross section (the upper
and lower � anges in the case of a box-beam) is a linear func-
tion of s.

Further generalization of Eq. (12a) is based on replacing P t

with P(x) and considering all other quantities in this equation
as functions of x.

Tip Moments

General solution for solid cross section: It may be shown
that the tip moments , , and (in the x, y, and z direc-t t tM M Mx y z

tions, respectively), induce constant curvature components
w,xx, v ,xx, and twist f,x along the beam. To derive an exact
solution for this case for a homogeneous solid cross section of
arbitrary geometry, the uncoupled case is � rst examined. The
uncoupled case is obtained by setting C16 to zero, and keeping
the remaining moduli C11, C66, and C55 unchanged. In this un-
coupled case, the torsional moment is the only contributortM x

to the warping. Here, it is convenient to adopt the closed-form
analytic solution procedure of Ref. 32, that yields the torsional
rigidity D (de� ned by and the associated two-dimen-tM /f )x ,x

sional warping function §(y, z).
The twist and the warping in the coupled case are assumed

to be the following functions of D and §(y, z):

tM Cx 16
f = 2 w (16a),x ,xxD 2C66

tM Cx 16 2C = §(y, z) 1 (w yz 1 v y 2 2u y) 1 const,xx ,xx ,x
D 2C66

(16b)

where the constant is determined to ensure zero-average warp-
ing distribution over the cross section. Based on Eqs. (1a– 1c)
and (3), the strains and the stresses in this case are obtained.
The resulting shear stresses satisfy the contour boundary con-
dition [Eq. (11)], the differential equilibrium equation [Eq.
(6)], and the integral equilibrium equations for Fy = 0, Fz = 0,
and Mx = 0 [Eq. (5)]. Adequate integrations of the normal
stress sxx is carried out to satisfy the integral equation for the
axial resultant load, P = 0, [Eq. (5)] and the natural boundary
conditions [Eq. (10)]. This step yields the following system of
three equations:

2 1
u A 2I 2I,x y z

v = I 2I 2I,xx y yy yzS D F G
w I 2I 2I,xx z yz zz

t tP 2 C (M /D)(I 2 I )16 x § z C66t t3 2M 2 C (M /D)(I 2 I ) (17)z 16 x §y yz 2F G C C 2 Ct t 11 66 16M 2 C (M /D)(I 2 I )y 16 x §z zz

where

(A, I , I , I , I , I , I , I , I )y z yz yy zz § §y §z

­§ ­§ ­§2 2= 1, y, z, yz, y , z , , y , z dA (18)E E S D­y ­y ­yA

To simplify the preceding general expression, the origin of the
system of coordinates is assumed to be located at the cross-
sectional area center, yielding Iy = Iz = 0. In addition, it may
be shown that I§ = 0, and that Iyz = I§y = 0 for a cross section
that exhibits symmetry about the z axis. For such cases a sep-
arate discussion will be devoted to the torsional and the trans-
verse tip moments.

Tip torsional moment : In this case, Eqs. (16a) and (17)t(M )x

show that u,x and v,xx vanish and:

tM C Cx 16 66
w = 2r (19a),xx z 2D C C 2 C11 66 16

t 2M Cx 16
f = 1 1 r (19b),x zF G2D 2(C C 2 C )11 66 16

where rz is a nondimensional parameter given by

r = 1 2(I /I ) (20)z §z zz

Equations (19a) and (19b) show that the effect of the coupling
moduli C16 is controlled by rz. Following the solution proce-
dure of Ref. 32 for determining §(y, z) and Eqs. (18) and (20),
rz may be evaluated. Alternatively, it is possible to show that
rz may be expressed as

D
r = (21)z

2I Czz 66

Expressions for rz for rectangular and elliptic cross sections
are presented in Ref. 28. It turns out that rz may be expressed
as a function of the nondimensional parameter q that combines
geometry and elastic characteristics given by

q = (a/b) (C /C ) (22)Ï 55 66

Generally, rz is a monotonic increasing function of q and is
bounded by 0 # rz # 2. For a thin rectangular cross section
(plate-beam model), high values of q are obtained, yielding rz
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Fig. 3 Predicted values of w,xx/f,x obtained by Eq. (23) for solid
cross sections compared with test and calculated results presented
in Ref. 25. As functions of the a) RHS of Eq. (23) and b) the
lamination angle.

> 2. For a square cross section that is made of transversely
isotropic material (where C55 = C66 and q = 1), rz > 0.84 is
obtained.

Generalization to the case of thin-walled cross section:
Equations (19a) and (19b) show that a tip torsional moment
induces a constant bending curvative and a constant twist, and
their ratio is given by

w r C C,xx z 16 66
= 2 (23)2f C C 1 C [(r /2) 2 1],x 11 66 16 z

To study the applicability of Eq. (23) to thin-walled symmetric
cross sections, the experimental and calculated results of Ref.
25 were utilized. As reported in Ref. 25, thin-walled symmetric
beams made of graphite/epoxy laminae (E11 = 141 3 109

N/m2, E22 = 9.78 3 109 N/m2, G12 = 6.13 3 109 N/m2, n12 =
0.42) were constructed as box-beams having [u]6 and [2u]6 at
the top and bottom � anges, respectively, and [u/2u]3 at the
right and left webs (Fig. 2c) (the local system of coordinates
j, h, and z is shown in Fig. 1b). This lamination mode results
in a symmetric beam where the elastic modulus C16 is zero
over the webs and has opposite signs over the � anges as de-
scribed in Fig. 2d. The test results clearly indicate that f(x)
and w,x(x) are linear functions and, therefore, w,xx and f,x are
constants for each test case. The predicted values of w,xx/f,x

obtained by Eq. (23) for solid cross sections are presented in
3a as a function of the right-hand sides (RHSs) of Eq. (23),
and in Fig. 3b as a function of the lamination angle. In both
cases the test and calculated results presented in Ref. 25 are
also shown. For thin-walled cross sections, rz is evaluated by
Eq. (21), which yields

ds2r = 2A I (24)z m zzY R t

where Am is the area enclosed by the median line.
Figure 3 shows that although it was developed for solid

cross sections, Eq. (23) is capable of predicting the elastic
coupling in thin-walled cross sections as well (one should also
keep in mind that there is a wide range of con� gurations that
may be characterized as symmetric beams, and small variations
in the predicted values are expected). Consequently, it may be
concluded that the closed-form solution for the symmetric
solid cross section presented in the preceding text correctly
describes the twist– bending coupling mechanism induced in
symmetric beams by torsional moment. In particular, it has
been shown that the quantity on the RHS of Eq. (23) is the
major factor in determining the present coupling mechanism.
In addition, it appears that for symmetric beams, the value of
w ,xx/f,x reaches a maximum of about 0.6 around a lamination
angle of 40 deg.

Further generalization of Eqs. (19a) and (19b) is based on
replacing with Mx(x) and considering all other quantities intM x

these equations as functions of x.
Tip beamwise and chordwise moments: The cur-t t(M ) (M )y z

vature components and the twist caused by a transverse tip
beamwise and chordwise moments are obtained from Eqs.
(16a) and (17) as u,x = 0 and

tM Cz 66
v = (25a),xx 2I C C 2 Cyy 11 66 16

tM Cy 66
w = 2 (25b),xx 2I C C 2 Czz 11 66 16

tM Cy 16
f = (25c),x 22I C C 2 Czz 11 66 16

As shown, the twist– bending coupling caused by is ex-tM y

pressed by

C16
f = 2 w (26),x ,xx

2C66

which relates the twist and the beamwise bending curvature.
Note that the same relation may be obtained by Eqs. (19a) and
(19b) between the additional twist because of C16 and the bend-
ing curvature in the case of a tip torsional moment. Because
Eqs. (25a– 25c) indicate that the effects of beamwise and
chordwise bending moments are functions of the elastic moduli
C11, C66, and C16 only, i.e., C55 has no in� uence in these cases,
by expressing the moments of inertia (Iyy, Izz) correctly, Eqs.
(25a– 25c) may be directly applied to thin-walled cross sec-
tions as well.

Further generalization of Eqs. (25a– 25c) is based on replac-
ing and with My(x) and Mz(x), respectively, and consid-t tM My z

ering all other quantities in these equations as functions of x.

Tip Beamwise Force

Solid cross section: The solution for a rectangular cross sec-
tion (bounded by y = 6a/2 and z = 6b/2) undergoing a tip
beamwise force is initiated by assuming u = v = 0, andt(F )z
a warping function that is a sum of isotropic warping function
and the warping obtained earlier for , namely,tM y

2t 36F z bz
C = 2 2 z 2 f yz (27),xF S D G3ab C 3 255
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Fig. 4 Predicted values of the beamwise displacements as ob-
tained by Eq. (30a) for thin laminated beams (plate-beam) as
functions of the tip beamwise load, compared with test results
presented in Ref. 23 (the displacements are measured at 91% span
location).

Equations (1a– c) and (3) show that by neglecting the C ,x term,
the resulting stresses are given by

s = 2z(C w 1 2C f ) (28a)xx 11 ,xx 16 ,x

2t6F bz 2t = 2 z 2 (28b)xz F S D G3ab 2

t = 2z(C w 1 2C f ) (28c)xy 16 ,xx 66 ,x

As shown, txz satis� es the boundary condition at z = 6b/2 [see
Eq. (11)]. However, because txy is not a function of y, one
should require txy = 0. This yields again the twist– bending
curvature relation of Eq. (26). In addition, the differential equi-
librium equation [Eq. (6)] shows that

t12F Cz 66w = 2 (29),xxx 3 2ab C C 2 C11 66 16

The natural boundary conditions at the beam tip [Eq. (10)]
show that w,xx(l ) = 0. Carrying out the longitudinal integra-
tions, w and f for a clamped beam become

t2F Cz 66 2w = x (3l 2 x) (30a)3 2ab C C 2 C11 66 16

t3F Cz 16
f = 2 x(2l 2 x) (30b)3 2ab C C 2 C11 66 16

As already indicated, Eq. (26) turns to represent the twist –

bending coupling mechanism. It has been shown in previous
sections that for general solid cross sections, Eq. (26) appears
to be valid for predicting the ratio of the additional twist to
the bending curvature as a result of a tip torsional moment

, and the ratio of the twist to the bending curvature as at(M )x
result of a tip beamwise moment . The solution for a rec-t(M )y
tangular cross section presented earlier shows that Eq. (26)
may also be used for determining the twist caused by a tip
beamwise force.

Partial validation of the prediction capability of Eqs. (30a)
and (30b) may be obtained by their correlation with the ex-
perimental results reported in Ref. 23 for a thin (a/b = 20.4)
laminated beam made of graphite/epoxy (E11 = 142 3 109

N/m2, E22 = 9.8 3 109 N/m2, G12 = 6 3 109 N/m2, n12 = 0.3).
Although these experiments were aimed toward the nonlinear
behavior, Eq. (30a) may be utilized to predict the linear (small
deformation) beamwise displacement (twist angle values are
not reported in Ref. 23). The elastic moduli used in these pre-
dictions were obtained by smearing the actual moduli over the
cross-sectional area. Figure 4 presents the beamwise displace-
ments at 91% span location as functions of the tip beamwise
load. The reasonable correlation presented in Fig. 4 demon-
strates the capability of Eq. (30a) that has been developed for
homogeneous cross sections to supply analytic prediction and
an insight for a broader range of con� gurations.

Although Eqs. (30a) and (30b) were derived for a rectan-
gular cross section, it is expected that they may serve as an
approximate solution for other cross-sectional geometries in-
cluding thin-walled cross sections by replacing ab3 with 12Izz.
To demonstate this capability, the tip beamwise displacement
and the tip twist angle of a thin-walled symmetric box-beam
(with elastic moduli distribution shown in Fig. 2e) were de-
termined by the numerical scheme described in Ref. 21, and
correlated with the prediction provided by Eqs. (30a) and (30b)
(Fig. 5). For that purpose, Eqs. (30a) and (30b) were written
as

˜3C I C11 zz 66
w = (31a)t t 3 2˜ ˜F l C 2 Cz 66 16

˜4C I C11 zz 16
f = 2 (31b)t t 2 2˜ ˜F l C 2 Cz 66 16

where = Cij/C11. The good correlation presented by Fig. 5C̃ij

leads to the conclusion that Eqs. (31a) and (31b) [or Eqs. (30a)
and (30b)] do provide general expressions that describe the
behavior of both solid and thin-walled symmetric beams. Al-
though minor changes are possible because of the wide range
of symmetric beam con� gurations, e.g., the different slopes in
Fig. 5a, it appears that the RHS of Eqs. (31a) and (31b) are
the major parameters that control the structural behavior in this
case. The next section provides additional discussion of this
point, and supplies analytic insight into the twist– bending cou-
pling mechanism for a thin-walled analysis point of view.

Further generalization of Eqs. (30a) and (30b) is based on
replacing with Fz(x), and considering all other quantities intF z

these equations as functions of x. Numerical study has shown
that the preceding prediction provides excellent correlation
with numerical results even for cases where the distribution of
the loads (or the beam characteristics) is described as a third-
order polynomial function of x.

A thin-walled cross section: To derive the expressions for
the elastic couplings in thin-walled beams caused by a tip
beamwise load, the single-cell box-beam of constant wall
thickness shown in Fig. 2b will be considered while the elastic
moduli are assumed to be constants across the wall thickness.
The shear stress in this case is given by [see Eqs. (2a), (2b),
and (4)]

t C (2zw 1 C ) 1 C (2rf 2 C ) (32)jh = 16 ,xx ,x 66 ,x ,s

where the underlined term will be neglected. Symmetry ar-
guments show that r tjh ds = 0, whereas displacement com-
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Fig. 5 Comparison between the tip deformation as predicted by
the closed-form solution for solid beams [Eqs. (31a) and (31b)],
and numerical results for a thin-walled con� guration: a) tip beam-
wise displacement and b) tip twist angle.

Fig. 6 Ratio f,x/w,xx for the con� guration of Figs. 2c and 2d. The
values predicted by Eq. (26) are represented by the solid line. The
symbols represent the test results for different spanwise locations
reported in Ref. 25.

patibility requires r C,s ds = 0. Consequently, Eq. (32) shows
that

zC ds16R
f,x

= (33)
w ,xx

rC ds66R
Application of the preceding equation to two, slightly different
thin-walled lamination modes will be discussed in what fol-
lows. First, the con� guration shown in Fig. 2c and 2d is con-
sidered. Clearly, the lamination mode shown in Fig. 2c results
in constant values of the elastic moduli C11 and C66, a positive
value of C16 over the upper � ange, a negative value of C16 over
the lower � ange, and a zero value of C16 over the vertical webs
as shown in Fig. 2d. For this case, it is easy to show that r
C66r ds = 2abC66, r zC16 ds = abC16. Substitution of these
values in Eq. (33) again yields the twist– bending mechanism
described by Eq. (26). However, for the con� guration shown
in Fig. 2b, where C16 > 0 for z > 0 and C16 < 0 for z < 0 (while
C11 and C66 are still constants), the coupling magnitude de-
scribed by Eq. (33) becomes

f C b,x 16
= 2 1 1 (34)S Dw 2C 2a,xx 66

Figure 6 presents the ratio f,x/w ,xx for the con� guration of Figs.
2c and 2d, which, as mentioned earlier, is given by Eq. (26).
The values predicted by Eq. (26) are represented by the

straight line, while the symbols represent the test results re-
ported in Ref. 25. The excellent correlation supports the pre-
ceding � ndings regarding the coupling magnitude (note that
the symbols in Fig. 6 are for different spanwise locations and
for different lamination angles). It may be concluded that Eq.
(26) represents the coupling mechanism in both solid and thin-
walled symmetric beams; whereas, according to Eq. (33),
slight differences in the lamination mode may induce differ-
ences similar to those shown by Eq. (34) for the con� guration
of Fig. 2b.

Tip Edgewise Force

In this case, an exact analytic solution for a rectangular cross
section (bounded by y = 6a/2 and z = 6b/2) may be derived
by assuming w = f = 0, and warping of the following shape:

2t 3 26F y a ay 3 2C = 2 2 y 1 ay 1 b(x 2 l ) y 2 1 gyF S D G S D3a bC 3 2 1266

(35)

where

C16
a = 2 b (36a)

3C66

C v16 ,xx
b = (36b)

2C x 2 l66

2C a b16
g = 2 u (36c),xS DC 1266

As will be shown, v,xx is proportional to (x 2 l ), and u,x is a
constant. Therefore, a, b, and g are all constants. Accordingly,
C is a function of both x and y. Using Eqs. (1a– 1c) and (3)
it is possible to express the stress components for this case as

2 2C C 2 C a11 66 16 2s = u 2 yv 1 b y 2xx ,x ,xxF S DGC 1266

2t6F C ay 16 22 y 2 (37a)F S D G3a bC 266

t = 0 (37b)xz

2t6F ay 2t = 2 y 2 (37c)xy F S D G3a b 2

Eqs. (37b) and (37c) show that the cross-sectional boundary
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Fig. 7 Predicted values of the twist as obtained by Eq. (43) for
a thin-walled antisymmetric beam compared with test results for
different spanwise locations reported in Ref. 25. The twist caused
by a) tip torsional moment and b) tip tensile force.

conditions are satis� ed. The differential equilibrium equation
[Eq. (6)] yields

t12F Cy 66
v = 2 (38),xxx 3 2a b C C 2 C11 66 16

while the natural boundary conditions at the beam tip [Eq.
(10)] show that

tF Cy 16
u = 2 (39),x 2ab C C 2 C11 66 16

Proper integrations for a clamped beam yields

t2F Cy 66 2v = x (3l 2 x) (40a)3 2a b C C 2 C11 66 16

tF Cy 16u = 2 x (40b)2ab C C 2 C11 66 16

Similar to the case of beamwise and edgewise moments [see
Eqs. (25a) and (25b)], C55 does not appear in the preceding
formulation. Therefore, these expressions may be directly ap-
plied to beams of other cross-sectional geometries, including
thin-walled cross sections. For that purpose, Eqs. (38) and (39)
may be generalized by replacing a3b with 12Iyy, and ab by A.
Accordingly, the present extension chordwise bending elastic
coupling will be determined by

Iu Cyy,x 16
= (41)

v A C,xxx 66

Further generalization is based on replacing with Fy(x) intF y

Eq. (38), and considering all other quantities in this equation
as functions of x.

Antisymmetric Beams

Analytic modeling of solid antisymmetric beams is rela-
tively complicated because of the need to model cross sections
of nonhomogeneous elastic moduli. However, when thin-
walled cross sections are considered, a cross section with con-
stant elastic moduli creates an antisymmetric lamination mode
(again, it should be noted that the lamination angles are rela-
tive to the local system of coordinates j, h, and z shown in
Fig. 1b). Therefore, the analytic insight into the coupling
mechanisms in antisymmetric beams has been derived for a
thin-walled cross section.

Tip Torsional Moment and a Tip Axial Force

Thin-walled cross section: The following modeling of an
antisymmetric thin-walled beam is derived for a single-cell
cross section of arbitrary geometry, constant wall thickness,
and constant elastic moduli. When a beam of such cross sec-
tion is subjected to a tip torsional moment and a tip axialt(M )x
force (P t), an exact analytic solution may be generated by as-
suming v = w = 0 and constant strains «jj and gjh over each
cross section and along the beam. Consequently, sjj and tjh

are also constants, and C is a function of s only (see Fig. 1).
Consequently, Eq. (7) shows that

tP = pts (42a)jj

tM = 22A tt (42b)x m jh

where p is the cross-sectional circumference and Am is the area
enclosed by the median line. Because sjj and tjh are constants,
the differential equilibrium equation [Eq. (8)] is satis� ed. Sub-
stitution of Eqs. (2a), (2b), and (4) into Eqs. (42a) and (42b)

yields two equations for the unknowns u,x and f,x. Solving
these equations yields

t1 1u C /p C /2A P,x 66 16 m= (43)2 tS D F G S D2f C /2A C p/4A Mt C C 2 C,x 16 m 11 m x11 66 16

The quality of the prediction provided by Eq. (43) for thin-
walled beams may be assessed by the test results presented in
Ref. 25. In these experiments, rectangular box beams made of
uniformly distributed (in the circumferential direction) elastic
moduli were tested. Three lamination modes were reported:
[15]6, [0/30]3, and [0/45]3. Equation (43) shows that for a tip
torsional moment, equal values of andt 2( f /M )(4A t/p)C ,,x x m 11

/(C11C66 2 are obtained. Figure 7a presents these2 2C C )11 16

quantities over its vertical and horizontal axes. The test results
of Ref. 25 are also presented. Note that for the [0/30]3 and
[0/45]3 lamination modes, the elastic moduli of the test results
were smeared over the wall thickness. As shown, Eq. (43)
predicts well the torsional rigidity in coupled thin-walled an-
tisymmetric beams.

Similarly, Eq. (43) shows that for a tip axial force, equal
values of (f,x/P t)(2Amt)C16 and /(C11C66 2 ) are ob-2 2C C16 16

tained. Figure 7b presents these quantities and their correlation
with the test results of Ref. 25. Again, reasonable correlation
is observed and it may be concluded that Eq. (43) well rep-
resents also the extension– twist coupling in thin-walled anti-
symmetric beams.

Solid cross section: The generalization of the behavior of
thin-walled antisymmetric beams under torsional moment and
axial loads to the case of solid beams is based on the solution
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Fig. 8 Demonstration of the capability of Eq. (44) to predict the
axial stiffness and the torsional rigidity for antisymmetric solid
cross sections. The predicted results for a thin-walled cross section
are represented by the solid line. The numerical results that were
obtained for the con� guration shown in Fig. 2e are represented
by the symbols. The results for a/b = a) 20 and b) 2.

Fig. 9 Demonstration of the capability of Eq. (44) to predict the
elastic couplings for antisymmetric solid cross sections. The pre-
dicted results for a thin-walled cross section are represented by
the solid line. The numerical results that were obtained for the
con� guration shown in Fig. 2e are represented by the symbols.
The results for a/b = a) 20 and b) 2.

presented by Eq. (43). Recalling that for the thin-walled case
the torsional rigidity may be expressed as J = /p, and the24A tm

cross-sectional area as A = pt, Eq. (43) may be written as

t1u (C /A) (C / AJ ) PÏ,x 66 16= tS D F G S D2f (C / AJ ) (C /J ) MC C 2 C Ï,x 16 11 x11 66 16

(44)

Validation of the coupling mechanism generalization presented
by Eq. (44) was carried out by the rectangular antisymmetric
solid beam presented in Fig. 2e. As shown, the cross section
consists of two laminae of opposite layup angles. The calcu-
lations were carried out using the numerical scheme reported
in Ref. 22.

The twist caused by a tip torsional moment and the axial
extension caused by a tip axial force [the diagonal terms in
Eq. (44)] may be nondimensionalized as andt(f JC /M ),x 66 x

(u,xAC11/P t), respectively. Equation (44) shows that these
quantities are both equal to the ratio (C11C66)/(C11C66 2 .2C )16

This identity is presented in Figs. 8a and 8b by the solid lines.
The symbols are numerical results obtained for the preceding
antisymmetric solid beam. Figures 8a and 8b demonstrate that
the ratio (C11C66)/(C11C66 2 is indeed the most important2C )16

quantity in the determination of the extensional stiffness and
the torsional rigidity of both thin-walled and antisymmetric
beams. The results presented in Figs. 8a and 8b may be for-
mulated as

f C C,x 11 66
JC = 1 1 g 2 1 (45a)66 f S Dt 2M C C 2 Cx 11 66 16

u C C,x 11 66
AC = 1 1 g 2 1 (45b)11 u S Dt 2P C C 2 C11 66 16

where for thin-walled cross sections gf = gu = 1, and for the
solid cross section under discussion, gf > 0.40, gu > 0.57 for
a /b = 20, and gf > 0.30, gu > 0.67 for a /b = 2. Clearly, for
C16 = 0, the quantities on the RHS of Eqs. (45a) and (45b)
become units.

The coupling terms that represent the axial extension be-
cause of a tip torsional moment and the twist because of a tip
axial force, may be nondimensionalized as andtu AJ/MÏ,x x

/P t, respectively. Equation (44) shows that these off-f AJÏ,x

diagonal terms are both equal to C16/(C11C66 2 . This re-2C )16

lation is presented in Figs. 9a and 9b (where for the sake of
convenience all values were multiplied by C66). As expected,
the coupling magnitudes are identical; however, the coupling
magnitude in the case of a /b = 20 is larger than that obtained
for a /b = 2. The results presented in Figs 9a and 9b may be
generalized as

f u 1 C,x ,x 16
= = g (46)fut t 2P M C C 2 CAJx 11 66 16Ï

where for thin-walled cross sections gfu = 1, and for the solid
cross section under discussion, gfu > 0.65 for a /b = 20, and
gfu > 0.50 for a /b = 2. It is therefore evident that the amount
of twist per unit axial force and the amount of axial extension
per unit torsional moment in thick solid cross sections are
about half of their magnitudes in thin-walled cross sections.
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Fig. 10 Demonstration of the capability of Eq. (44) to predict the
amount of axial extension per unit twist in the presence of a tip
torsional moment for antisymmetric solid cross sections. The pre-
dicted results are represented by the solid line. The numerical
results that were obtained for the con� guration shown in Fig. 2e
are represented by the symbols. The results for a/b = a) 20 and
b) 2.

Fig. 11 Demonstration of the capability of Eq. (44) to predict the
amount of twist per unit axial extension in the presence of a tip
axial force for antisymmetric solid cross sections. The predicted
results are represented by the solid line. The numerical results
that were obtained for the con� guration shown in Fig. 2e are rep-
resented by the symbols. The results for a/b = a) 20 and b) 2.

In addition, it is interesting to examine the overall behavior
of the extension – twist elastic coupling terms for thin-walled
and solid cross sections. Equation (44) shows that for a tip
torsional moment, the extension– twist elastic coupling is given
by

u A C,x 16
= (47)Îf J C,x 11

The solid line in Figs. 10a and 10b represents the above Eq.
(47). The symbols are numerical results obtained for the an-
tisymmetric solid beam under discussion. The lamination an-
gles (u, see Fig. 2e) are also indicated. As shown in Fig. 10a,
in the case of a/b = 20 it is evident that like the case of thin-
walled beams, the ratio C16/C11 is the most important parameter
that controls the extension– torsion coupling. For a thicker
cross section of a /b = 2, Fig. 10b shows that the calculated
results are more scattered; however, it is still evident that the
ratio C16/C11 is the major parameter in the determination of
the elastic couplings as well. For a tip axial force, Eq. (44)
shows that

f J C,x 16
= (48)Îu A C,x 66

Figure 11a presents the preceding coupling by the solid line,
and the calculated results for a solid beam of a /b = 20 are
represented by the symbols along with the corresponding lam-
ination angles. Figure 11b presents the values for a thicker
cross section, where a/b = 2. Consequently, it is clear that the
ratio C16/C66 controls the extension – torsion coupling in this
case.

It should be noted that by de� nition, the origin in Figs. 8 – 11
includes the values for u = 0 and 90 deg.

Based on the results presented in Figs. 10 and 11 it is pos-
sible to conclude that the couplings in antisymmetric beams
are linearly correlated with the elastic moduli ratios C16/C11

and C16/C66, and with the geometrical quantity .J/AÏ
Further generalization of Eq. (44) is based on replacing P t

and with P and Mx, respectively, to re� ect the possibilitytM x

to determine u,x and f,x as local values along the beam, i.e.,
functions of x, according to the local values of the resultant
torsional moment Mx and the axial force P.

Concluding Remarks
A study of the similarities between solid and thin-walled

composite beams has been presented. For that purpose, a set
of closed-form analytic solutions for solid and thin-walled
composite beams were discussed. These solutions were ex-
amined by their adequacy to predict general characteristics of
composite beams beyond the speci� c con� guration and lami-
nation modes that they were derived for. The study has been
based on correlation with both available experimental data and
calculated results of numerical schemes.

The � ndings of the present study clearly indicate that there
are important similarities between the structural behavior and
the composite-related structural mechanisms in composite
beams that may be generalized by approximate analytic ex-
pressions. Speci� c examples are the twist– bending coupling
mechanism in symmetric beams and the extension – torsion
coupling in antisymmetric composite beams. It has been shown
that the twist– bending coupling has been shown to be con-
trolled by the same elastic moduli ratio for both solid and thin-
walled beams. Similarly, the extension– torsion coupling in
antisymmetric composite beams has been shown to be deter-
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mined by the same elastic moduli ratio and cross-sectional
geometric parameters in both solid and thin-walled beams.

Overall, it may be concluded that if interpreted correctly, the
set of closed-form solutions that has been studied does supply
a clear analytic insight into the coupling mechanisms for both
solid and thin-walled composite beams. In addition, the gen-
eralization offered by the present study provides strength of
materials-type expressions for preliminary estimation of the
coupled structural behavior of generic composite beams. Nev-
ertheless, there are cases where the similarities indicate cor-
rectly only the trend and the in� uential parameters but not the
associated magnitude of the phenomenon. This may emerge
from a lack of proper similarities in material property and ply-
angle de� nitions, and it is recommended to continue study in
this direction.

Appendix A: Reduced Stress-Strain Relations
The general constitutive relations for an unbalanced ortho-

tropic lamina that is parallel to the x – y plane and the principal
axis of which does not coincide with the x direction, may be
written as

{s} = [C ]{«} (A1)

where the stiffness matrix [C ] is given by

C 9 C 9 C 9 0 0 C 911 12 13 16

C 9 C 9 C 9 0 0 C 912 22 23 26

C 9 C 9 C 9 0 0 C 913 23 33 36[C ] = (A2)
0 0 0 C 9 C 9 044 45

0 0 0 C 9 C 9 045 55

C 9 C 9 C 9 0 0 C 916 26 36 66

The elastic moduli are functions of the material propertiesC 9ij
and the ply angle relative to the x axis, e.g., Ref. 30, and {s}
and {«} are the stress and strain vectors, respectively, namely,

{s} = ^s , s , s , t , t , t & (A3)xx yy zz yz xz xy

{«} = ^« , « , « , g , g , g & (A4)xx yy zz yz xz xy

Assuming syy = szz = tyz = 0 enables the expression «yy, «zz,
and gyz in terms of «xx, gxz, and gxy as

«yy 1
« =zzH J D
gyz

C 9 C 9 2 C 9 C 9 0 C 9 C 9 2 C 9 C 923 13 33 12 23 36 33 26 «xxC 9 C 9 2 C 9 C 9 0 C 9 C 9 2 C 9 C 923 12 22 13 23 26 22 363 gxzH JDC945F G gxy0 2 0
C 944

(A5)

where D = 2 . By resubstituting Eq. (A5) in Eq.2C 9 C9 C922 33 23

(A1), the reduced stress-strain relations of Eq. (3) are obtained
where

2 2C 9 C9 1 C 9 C 9 2 2C 9 C 9 C 933 12 22 13 23 12 13C = C 9 2 (A6a)11 11
D

C = C 916 16 (A6b)
C 9 (C 9 C 9 2 C 9 C 9 ) 1 C 9 (C 9 C 9 2 C 9 C 9 )12 33 26 23 36 13 22 36 23 26

2
D

2C945
C = C 9 2 (A6c)55 55 C 944

2 2C 9 C9 1 C 9 2 2C9 C 9 C 933 26 36 23 26 36
C = C 9 2 (A6d)66 66

D
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